

Development of AMSR-E Brightness Temperature Data Assimilation System on the JMA Global Analysis

Yoshiaki SATO

Numerical Prediction Division, Japan Meteorological Agency

14 Sep. 2005, Joint AMSR Science team meeting

- Introduction
 - JMA Operational Models
 - AMSR-E Data assimilation
- GSM-4DVAR
- Experiment setting
- Experiment results
- Summary

JMA Operational NWP Models

Global Spectral Model
T_L319 (60km)
40 Layers (~0.4hPa)
(updated on Feb. 2005)
96/216hrs (00/12UTC)
for 1 week forecast

DA-System 4DVAR (T63) (updated on Feb. 2005) Regional Spectral Model

H.Rez.: 20km 40 Layers (~10hPa)

51hrs (00,12UTC) for 2 days forecast

DA-System 4DVAR (40km) (since Jun. 2003) Meso-Scale Model

H.Rez.:10km

40 Layers (~22km)

(updated on Sep. 2004)

18hrs (00,06,12,18UTC) for several hours forecast

DA-System 4DVAR (20km) (since Mar. 2002)

Current Utilization of the AMSR-E

- Using MWR (including AMSR-E) data
 - on MSM (Meso-Scale Model)
 - Operationally Assimilated
 - as Total Column Precipitable Water (TCPW) & Rain Rate (RR)

» SSM/I&TMI from Oct. 2003

» AMSR-E from Nov. 2004

- on RSM (Regional Spectral Model)
 - N/A
 - Because RSM will be replaced by high resolution GSM in some years
- on GSM (Global Spectral Model)
 - Under Development
 - as TCPW
 - as Brightness Temperature (T_B): Today's Topics!

- Introduction
- GSM-4DVAR
 - Configurations
 - Observations
- Experiment setting
- Experiment results
- Summary

DA system for GSM

- Upgraded from 3DVAR to 4DVAR on Feb. 2005
 - Configurations

> Flow Chart

- Incremental method
 - Outer Model: T_L319 (~60km) Non Liner models
 - Inner Model: T63 (~200km) NonLinear/ TangentLinear/ AdJoint models
- 6-hour assimilation window, with hourly observation cost calculation
- 35 (basic physics) + 35 (moist physics) iterations
- Observations
- > Distribution Sample
- Surface Observation, Upper Air Sounding,
 Aviation, Bogus, Atmospheric Motion Vectors, Scatterometer
 AMSU-A/B
 - assimilated as T_B with RTM (RTTOV7)
 - => We can upgrade the 4DVAR to use MWR-T_B

- Introduction
- GSM-4DVAR
- Experiment setting
 - OSE settings
 - Sample of the bias correction
- Experiment results
- Summary

Configuration of OSE on MWR-T_B Data

Study Period:

- Assimilation: 2004.07.20-09.10

Evaluation: 2004.08.01-08.31

- Spec. of MWR-T_B Data Assimilation
 - MWR-T_B data

• SSM/I: 19V, 22V, 37V, 85V

AMSR-E: 18V, 23V, 36V, 89V

- Observation Error Setting
 - (S.D. of the T_B departure from GSM) x 2

- Area
 - Over the clear and thin cloudy ocean with SST >= 20deg.C
- Bias Correction
 - With the parameters of SST², SST, Guess-T_B

Sample of the Bias Correction

Color shows Mean Error from GSM
Blue <- 0 +> Red

ME depends on T_B and SST

 $BC = A SST^2 + B SST + C T_B + D$

A, B, C, D: constants

Original / Bias Corrected

N=26230

R=0.944 ME=-1.578 RMSE=3.251

R=0.951 ME= 0.021 RMSE=2.479

- Introduction
- Configuration of the GSM-4DVAR
- Experiment setting
- Experiment results
 - Positive result
 - Negative result
 - Discussion
- Summary

Improvement on monthly rainfall distribution

- Evaluated by the GPCP monthly rainfall data
 - Correlation is improved from 0.880 to 0.892

Improvement on Typhoon Track Forecast

- Evaluated by the "JMA Best Track" data
 - Typhoon position error become smaller

RMSE against Initial Conditions...

- RMSE sequence on Z500/T850 for 216hrs forecast
 - Positive : over the Tropics and S.H.
 - Negative : over the N.H.
 - Unfortunately Japan Islands are located in N.H.
 - => operational use is not permitted

Why?

- Why does MWR data make the N.H. prediction worse?
 - Bias correction ?
 - We did some sensitivity tests (for other parameters)
 - No result showed the better score.
 - Data Coverage ?
 - We did some sensitivity tests (for SST limitation)
 - No result showed the better score.
 - Thinning Method ?
 - Only considered spatial distribution but temporal difference.
 - => new thinning method.
 - Inconsistency with Other satellite data?
 - It needs to consider the AMSU-A/B T_B bias correction.
 - => "Variational Bias Correction (VBC)"
 - VBC was developed at NCEP
 - or... Hard Luck ?

- Introduction
- Configuration of the GSM-4DVAR
- Experiment setting
- Experiment results
- Summary

Summary

- MWR T_B DA system for GSM4DVAR was implemented.
- The result shows
 - Improvement on Rainfall distribution
 - Improvement on Typhoon Track Forecast
 - Improvement on T850 & Z500 forecast in the Tropics & S.H.
 - However the T850 & Z500 forecast was not improved in the N.H.
 - \Rightarrow Thus, the operational use of MWR T_B has not started yet.
 - The cause is still under investigation.
- We are currently doing the new OSE
 - New Bias Correction Method (Variational Bias Correction)
 - New Thinning Method

Current Development

- Employment of Variational Bias Correction
 - for All T_B data (AMSU-A/B, MWRs)
 - Predictors
 - Integrated Weighted Lapse Rate (for AMSU-A)
 - Total Column Precipitable Water (for the AMSU-B & MWRs)
 - Surface Temperature
 - Surface Wind Speed
 - cos (satellite zenith angle)
 - Constant
- Improving the Data Thinning Method
 - considering the time slot differences

Variational Bias Correction

- The Sequence of the Bias Correction Coefficients
 - It developed rapidly in the 1st 5days,
 and became almost stable after the period in this channel.

Variational Bias Correction

- The sequence of the TB departure histogram
 - Red shows Original data
 - Blue shows Bias Corrected data
 - The RMSE of BC data is reducing gradually.
 - The asymmetry of BC data is also reducing gradually.

The numbers under the figure shows (N COR ME RMSE)

New Thinning Method

Previous Thinning (N=4337) (Only Considering Spatial Distribution)

New Thinning (N=6396) (Considering Assimilation Time Slot)

Dividing to the hourly assimilation time slots.

SSM/I(13,14,15), AMSR-E

JMA Global Analysis Flow

Operationally Used Observations on GSM

Upgrade of the HPC system

- Installing the New HPC system currently
 - Current system: NAPS7 (2001.3-)
 - HITACHI SR8000E1
 - 8CPU (8GByte) x 80 NODE
 - 768GFlops
 - Next system : NAPS8 (2006.3-)
 - HITACHI SR11000J1
 - 16CPU (64GByte) x 210 NODE
 - 27.5TFlops (~35.8 times as NAPS7)
 - Including Meteorological Satellite Center system

http://www.hitachi.co.jp/Prod/comp/hpc/SR/11ktop.html

- NWP system Upgrade Plan
 - Current: GSM:TL319(60km)L40/12hrly, MSM:10kmL40/06hrly
 - » GA: T63, MA:20km (hydro-static)
 - Next: GSM:TL959(20km)L60/06hrly, MSM:05kmL50/03hrly
 - » GA: T106⇒TL319 , MA:10km (non-hydro-static)